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Abstract

The assumption of unidimensionality must be met in order to legitimately use common IRT models. The
validity of score-based inferences rests largely on the extent to which it can be shown that the dimensional
structure underlying a test is consistent with the blueprint. Little research has been undertaken to examine
the behavior of dimensionality assessment procedures in conditions similar to those encountered in small
volume administrations. The purpose of this study was to examine empirical Type I error rates and rejection
rates for three dimensionality assessment procedures with datasets simulated to reflect short tests and small
samples. The TESTFACT G2 difference test suffered from an inflated Type I error rate with unidimensional
datasets whereas the approximate x2 statistic based on a NOHARM analysis did not. Rejection rates with
simulated two-dimensional datasets were high for both procedures. The behavior of the G2 difference test
was highly influenced by the independent variables manipulated, which was not the case for the
approximate x2 statistic. The implications of these results for small volume administrations are discussed.

Introduction

The assumption of unidimensionality must be met in order to legitimately use common item response
theory (IRT) models. The validity of score-based inferences rests largely on the extent to which it can be
shown that the dimensional structure underlying a test is consistent with the blueprint. Little research has
been undertaken to examine the behavior of dimensionality assessment procedures in conditions similar to
those encountered in small volume administrations. The purpose of this study was to examine empirical
Type I error rates and rejections rates for three dimensionality assessment procedures with datasets
simulated to reflect short tests and small samples. The TESTFACT G2 difference test and the LISREL8 x2

statistic suffered from an inflated Type I error rate with unidimensional datasets, whereas the approximate
X2 statistic based on a NOHARM analysis did not. Rejection rates with simulated two-dimensional datasets
were high for all procedures. The behavior of the G2 difference test was highly influenced by the
independent variables manipulated, which was not the case for the approximate x2 statistic. The
implications of these results for small volume administrations are discussed.

The many advantages of IRT models, namely that "sample-free" item parameter estimates and "test-free"
ability estimates can be obtained, have contributed to their increased use in education and psychology to
address a multitude of measurement-related issues. Recently, IRT models have also been popular and quite
useful with respect to the development of computerized adaptive tests (CAT; Hambleton, Zaal, & Pieters,
1993; Wainer, Dorans, Flaugher, Green, Mislevy, Steinberg, & Thissen, 1990). Law School Admission Council
(LSAC) staff currently employ an IRT model to estimate the statistical characteristics of test items and equate
scores obtained on alternate forms of a test as well as to assemble new forms. However, in order to
legitimately use common IRT models, several strict assumptions must be met, one of which is
unidimensionality of the latent ability space. It is assumed, when using most IRT models, that the probability
of a correct response on a given item requires a single underlying latent trait, often interpreted as a
proficiency or ability being measured by the test. For example, the probability of a correct response on a
given item using the three-parameter logistic IRT function (Lord & Novick, 1968) is given by

P(x=1 I a,b,c,0) = c+(1 c)
1+eDa(

eDa(8b) (1)

that is, the probability of correctly answering the item (denoted by x = 1) is assumed to be dependent upon an item
discrimination (a) , difficulty (b), and lower asymptote (c) parameter as well as the latent trait or proficiency
( 0 ) postulated to underlie the item responses. It is clear that the assumption of unidimensionality is often violated
with actual achievement datasets where the response to an item is dependent upon not only the hypothesized
proficiency but also several other secondary abilities. For example, the dependencies that exist between item sets
in the Analytical Reasoning (AR) and Reasoning Comprehension (RC) sections of the Law School Admission
Test (LSAT), due to the presence of passages, contribute in increasing their dimensional complexity to include
factors other than the proficiency hypothesized to underlie the item responses (i.e., AR and RC abilities).
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This led researchers to propose a multitude of descriptive statistics to assess dimensionality, or more
commonly, departure from the assumption of unidimensionality. Table 1 presents some of the procedures
proposed thus far in the literature along with their respective contributors.

TABLE 1

Procedures proposed for assessing the dimensionality of a set of item responses
Procedures References
Indices based on linear factor analysis/principal
component analysis

Nonmetric multidimensional scaling

Tucker's procedure for assessing dimensionality

Humphrey's procedure for assessing
dimensionality

Modified parallel analysis

Berger & Knol (1990)
Collins, Cliff, McCormick, & Zatkin (1986)
De Ayala & Hertzog (1989)
Hambleton & Rovinelli (1986)
Hattie (1984, 1985)
Nandakumar (1994)
Reckase (1979)
Zwick & Velicer (1986)

De Ayala & Hertzog (1989)
Jones (1988)
Jones, Sabers, & Trosset (1987)
Koch (1983)
Reckase (1981)

Roznowski, Tucker, & Humphreys (1991)

Roznowski, Tucker, & Humphreys (1991)

Ben-Simon & Cohen (1990)
Budescu, Cohen, & Ben-Simon (1994)
Drasgow & Lissak (1983)
Hulin, Drasgow, & Parsons (1983)

Bejar's dimensionality assessment procedure Bejar (1980, 1988)
Hambleton & Rovinelli (1986)
Kingsbury (1985)
Liou (1988)

The Holland-Rosenbaum procedure Ben-Simon & Cohen (1990)
Holland (1981)
Holland & Rosenbaum (1986)
Nandakumar (1994)
Rosenbaum (1984)
Zwick (1987)

Stout's essential dimensionality procedure De Champlain (1992)
De Champlain & Tang (1993)
Gessaroli & De Champlain (1996)
Junker & Stout (1994)
Nandakumar (1987, 1991, 1994)
Nandakumar & Stout (1993)
Stout (1987, 1990)

Indices and statistics based on full-information Berger & Knol (1990)
nonlinear factor analysis Bock, Gibbons, & Muraki (1988)

Dorans & Lawrence (1988)
Kingston (1986)
Kingston & McKinley (1988)
Morgan (1989)
Muraki & Engelhard (1985)

Indices and statistics based on limited-information Berger & Knol (1990)
nonlinear factor analysis De Champlain (1992)

De Champlain & Gessaroli (1991)
De Champlain & Tang (1993)
Gessaroli & De Champlain (1996)
Hambleton & Rovinelli (1986)
Hattie (1984, 1985)
Knol & Berger (1991)
Nandakumar (1994)
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At the present time, Stout's DIMTEST procedure and indices, as well as statistics based on nonlinear factor
analysis (NLFA) appear to be the two most popular and promising procedures for assessing the
dimensionality of a set of item responses.

Stout proposed a nonparametric procedure (the T statistic) that is based on his concepts of essential
independence and essential dimensionality (Nandakumar, 1991; Nandakumar & Stout, 1993; Stout, 1987, 1990).
Stout, Junket Nandakumar, Chang, and Steidinger (1991) developed the computer program DIMTEST to
estimate the value of the T statistic for any given dataset. Essential dimensionality can be defined as the
number of latent traits that is needed to satisfy the assumption of essential independence given by

1

n ( n 1 )
I Cov (Ui,Ui IA) II- 0

that is, a mean absolute residual covariance value that tends towards zero at fixed latent trait levels as the
number of items increases towards infinity. The terms shown in Equation 2 can be defined as follows:

n = the number of items;
Ui = the response to item i for a randomly selected test taker; and
Uj = the response to item j for a randomly selected test taker.

Several versions of the T statistic have been proposed by Stout (1987, 1990) and Nandakumar and Stout
(1993) to test the assumption of essential unidimensionality (de) given by

H,: de = 1

HQ : de > 1

(2)

where de corresponds to the number of dimensions required to satisfy the assumption of essential
independence. The first step involved in computing the T statistic entails dividing a set of items into two
distinct subsets, labelled AT1 and AT2, and a partitioning test or PT. The AT1 items are selected as the
unidimensional subset, generally based on the factor loadings estimated after fitting a linear factor analytic
model to the tetrachoric item correlation matrix. The AT2 items are chosen to correct for bias, which results
from matching test takers based on their number-right score on the remaining items; that is, the PT test.
Nandakumar and Stout (1993) recommend using the T2 version of the statistic in most instances given its
demonstrated low Type I error and high power. The T2 statistic can be defined as follows:

TL,
2

Tb

where

1 K
1 Xk

71,2 = IA L 2
K k=1 S

k
.. I

and

K = the number of subgroups based on the PT item subscore;
ki = the ith subgroup of test takers based on the PT item subscore; and
Sk = the standard error of the T2 statistic.

(3)

(4)

Note that the Tb statistic is identical to the TL,2 with the exception that it is computed for AT2 items. Readers
interested in obtaining more information regarding the computation of the T2 statistic should consult
Nandakumar and Stout (1993). The T2 statistic is asymptotically normally distributed with a mean and
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standard deviation equal to zero and one respectively, under the null hypothesis of unidimensionality.
Nandakumar and Stout (1993) showed, in a series of Monte Carlo studies, that the T2 statistic was generally
accurate in correctly determining essential unidimensionality or violation of the assumption with
multidimensional datasets, except when the test contained few items (less than 25) and the sample sizes
were small (less than 750 test takers). Consequently, the procedure cannot be used in many instances, for
example, with CAT forms, where short test lengths and small sample sizes are a common occurrence due in
part to the assembly algorithms used and the "on-demand" nature of the scheduling.

Another promising approach, with respect to assessing the dimensionality of an item response matrix, is the
one that treats common IRT models as a special case of a more general NLFA model. Bartholomew (1983),
Goldstein and Wood (1989), McDonald (1967), and Takane and De Leeuw (1987), to name a few, have shown
that common IRT models and NLFA models are mathematically equivalent. This led other researchers to
suggest that a useful way of assessing the dimensionality of a set of item responses might entail analyzing
the residual correlation or covariance matrix obtained after fitting an m-factor model to an item response
matrix, where ni corresponds to the number of factors or dimensions. The rationale underlying this
approach is as follows: zero residual correlations obtained after fitting a unidimensional (i.e., one-factor)
model to an item response matrix would be indicative of unidimensionality. A host of descriptive indices
and hypothesis tests have been proposed to assess dimensionality based on both limited-information and
full-information NLFA models (see Hattie, 1984, 1985 for a review of earlier indices). The estimation of
parameters in limited-information NLFA models is restricted to the information contained in the
lower-order marginals (e.g., the pairwise relationships between items) whereas the information included in
all higher-order relationships (i.e., in the item response vectors) is utilized to estimate the parameters of
full-information NLFA models.

Gessaroli and De Champlain (1996) investigated the usefulness of an approximate chi-square statistic for the
assessment of dimensionality that is based on the estimation of parameters for a limited-information
m-factor model using the polynomial approximation to a normal ogive model (McDonald, 1967), as implemented
in the computer program NOHARM (Fraser & McDonald, 1988). This approximate chi-square statistic,
originally proposed by Bartlett (1950) and outlined in Steiger (1980a, 1980b), tests the null hypothesis that
the off-diagonal elements of a residual correlation matrix are equal to zero after fitting an m-factor NLFA
model and can be defined as

k i-1 (r)
2

X = ( N 3 )1 1Z zi

i=1 j.1
(5)

where Z2ij(r) is the square of the Fisher Z corresponding to the residual correlation between items i and
j (i, j = 1, k) and N is the number of test takers. Under the null hypothesis of unidimensionality, this
statistic is distributed approximately as a central chi-square with df= .5k (k -1) t, where k is the number of
items and t is the total number of parameters estimated in the NLFA model. Although the approximate x2
statistic is based on unweighted least-squares estimation (ULS), and hence is weak in its theoretical
foundation, Browne (1977, 1986) has indicated that the latter statistic is often equivalent to a x2 obtained
from generalized least-squares estimation (GLS). Browne states that, in most instances, x2 statistics based on
ULS and GLS tend to differ only slightly. Therefore, the approximate x2 statistic outlined in Equation 5 has
the potential of being a useful practical tool for the assessment of dimensionality. Simulation and real data
studies (De Champlain, 1996; Gessaroli & De Champlain, 1996) have shown that the Type I error rate for the
approximate chi-square statistic tends to be at or below nominal alpha levels. With multidimensional
datasets, rejection rates were generally high, even in some instances with datasets containing as few as 15
items and 500 test takers, which was not the case for the T statistic (De Champlain, 1992; Gessaroli & De
Champlain, 1996). The computer program TESTFACT (Wilson, Wood, & Gibbons, 1991) allows the user, among
other things, to estimate the parameters and the fit of various full-information factor analytic models using the
marginal maximum likelihood (MML) procedure outlined by Bock and Aitkin (1981) via the EM algorithm of



Dempster, Laird, and Rubin (1977). The thresholds and factor loadings included in the model are estimated
so as to maximize the following multinomial probability function:

N! r2Lm=P( X) = Pi ,
1

. r2 . r
r,

P2 ...Ps r
s (6)

where rs is the frequency of response pattern s and Ps is the marginal probability of the response pattern
based on the item parameter estimates. The function given in Equation 6 is customarily referred to as
full-information item factor analysis (Bock, Gibbons, & Muraki, 1988). The user can also assess the fit of a given
full-information factor analytic model using a likelihood-ratio chi-square statistic that is provided in
TESTFACT. This statistic can be defined as

2"

G2 = 21r I n ,
Pi

1

where r, is the frequency of response vector 1 and P, is the probability of response vector I. The degrees of
freedom for this statistic are equal to

2n(m + 1) + m(m 1)/2,

(7)

where n is the number of items and m is the number of factors. However, Mislevy (1986) has indicated that
this G2 statistic often poorly approximates the chi-square distribution given the large number of empty cells
typically encountered with actual datasets (the number of unique response vectors is equal to 2n). Hence,
Haberman (1977) recommends using a likelihood-ratio chi-square difference test to assess the fit of
alternative models. The G2 difference test is computed in the following fashion:

G2 G2 G2
diff 1-F 2-F

where G21-F is the value of the likelihood-ratio chi-square statistic obtained after fitting a one-factor model
(c.f. Equation 7) and G22-F is the value of the likelihood-ratio chi-square statistic obtained after fitting a
two-factor model. The degrees of freedom for the difference test are also computed by subtracting those
associated with the one- and two-factor model fit statistics.

(8)

However, preliminary research has shown that the likelihood-ratio chi-square difference test is generally
unable to correctly identify the number of dimensions underlying an item response matrix (Berger & Knol,
1990). However, the small number of replications (10) performed in the latter study limits the extent to
which these results can be generalized to other conditions.

Although these fit statistics have been shown to be useful and informative for the assessment of
dimensionality, few studies have examined their behavior with small sample sizes and short test lengths.
This type of study seems imperative given the current interest in CAT by the LSAC as evidenced by the
current five-year research project on this subject. Dimensionality assessment is especially critical within a
CAT environment where several test forms are "tailored" to different test takers according to their ability
level. These CAT forms should be comparable with respect to their dimensional structure in order to ensure
valid score-based inferences for all test takers, irrespective of the set of items administered. The assessment
of dimensionality is also critical within a computerized mastery testing (CMT) setting where a small set of
items is typically administered to all test takers in the first stage of testing in order to determine whether test
takers can be clearly categorized as masters/nonmasters or whether further sets of items need to be given
before making any final decision as to their status. The first subset of items administered within this
multistage or sequential design often contains very few items. Hence, it is critical to ascertain whether the
dimensional structure of this initial test is consistent with that of subsequent subtests in order to ensure that
the design is fair for all test takers, regardless of their ability level.
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Purpose

The purpose of this study is two-fold: (1) examine the empirical Type I error rates calculated for the
approximate chi-square statistic and the likelihood-ratio chi-square difference test with unidimensional
datasets simulated to vary according to test length and sample size; and (2) examine the rejection rates
obtained for the approximate chi-square statistic and the likelihood-ratio chi-square difference test with
two-dimensional item response matrices generated to vary as a function of sample size, test length, and
degree of correlation between the latent traits.

Methods

Llnidimensional Dataset Simulations

Dichotomous unidimensional item response vectors were simulated according to the three-parameter
logistic IRT function outlined in Equation 1 in the first part of this study. Data sets were generated to vary
according to two different test lengths (20 and 40 items) as well as three sample sizes (250, 500, and 1,000 test
takers). Note that the simulated 40-item datasets were composed of two 20-item tests; that is, the item
parameters utilized to simulate responses to items 21-40 were identical to those selected to generate
responses to items 1-20. In order to simulate item responses that are typical of those encountered at the
LSAC, 20 IRT-item parameters were randomly selected from one form of the LSAT and used in the item
response generation process. The item parameters that were chosen to simulate unidimensional item
response vectors are shown in Table 2.

TABLE 2

True unidimensional item parameters
Item a b c
1 0.622132 -1.710310 0.119606
2 0.779642 0.470174 0.079124
3 0.806952 0.161454 0.162809
4 0.842712 0.081694 0.140943
5 1.152409 1.679257 0.153869
6 0.558630 -1.387155 0.119606
7 0.341596 -0.599501 0.119606
8 0.878353 1.081976 0.058036
9 0.957605 0.916684 0.196364
10 1.086517 0.693614 0.042316
11 0.751002 -0.696663 0.119606
12 0.551905 -0.315874 0.119606
13 0.630988 1.696784 0.223633
14 0.552291 -1.294931 0.119606
15 0.785618 -0.285280 0.095973
16 0.730466 -0.402966 0.119606
17 0.845300 0.004327 0.188632
18 0.792140 1.138772 0.155819
19 0.822973 1.540107 0.073885
20 0.601753 1.358651 0.111348



Latent trait values were also simulated according to an N(0,1) distribution. Each cell of this 2 (test length) x 3
(sample size) design was replicated 100 times for a total of 600 unidimensional datasets.

The fit of a unidimensional model was then ascertained for each of the 600 unidimensional datasets using
both TESTFACT (Wilson, Wood, & Gibbons, 1991) as well as NOHARM (Fraser & McDonald, 1988).

More precisely, one- and two-factor models were fit to each simulated unidimensional dataset with
TESTFACT using all default values. As mentioned previously, the likelihood-ratio chi-square difference test
was selected as the fit statistic for all unidimensional dataset analyses given that it follows a chi-square
distribution even in the presence of sparse frequency tables (Haberman, 1977). Again, the G2 difference test
is obtained by simply subtracting the G2 value obtained after fitting a two-factor model from that computed
after fitting a unidimensional model.

The fit of a unidimensional model (i.e., one-factor model) was also ascertained using NOHARM (Fraser &
McDonald, 1988). The approximate x2 statistic was then computed for each dataset using the computer
program CHIDIM (De Champlain & Tang, 1997).

Two-Dimensional Dataset Simulations

In the second part of the study, dichotomous two-dimensional item response vectors were simulated based
on a multidimensional extension of the three-parameter logistic IRT model (M3PL; Reckase, 1985) outlined
in Equation 1. The probability of a correct response on item i (denoted by x = 1), based on this compensatory
M3PL model, is given by

e'ai(ei+ di)
Pi( xi=1 I a1, di, ci, 131) = + (1 ci)

1 + e ai(ei÷ di)

where

ai = a vector of discrimination parameters for item i;
di = a scalar parameter related to the difficulty of item i; and
Oj = a latent trait vector.

Reckase (1985) states that a multidimensional item discrimination parameter (MDISC) can be estimated
using the following equation:

MDISCi = a2
ik

k =1

where aik is the discrimination parameter of item i on dimension k (k = 1,2, ..., 1). In a similar fashion, the
multidimensional item difficulty (MDIF) for item i can also be computed using the following formula:

MDIF1 =
d;

n

k =1

a2
ik

(9)

(10)

It should be noted that Reckase (1985) recommends providing direction cosines in addition to the distance
outlined in Equation 11 when describing the MDIF value of an item. However, he does suggest that the
distance parameter can be interpreted much like a b parameter would be for a unidimensional logistic IRT
model.Past research undertaken to assess the dimensionality of the LSAT has convincingly shown that a
two-factor model appears to adequately account for the item response probabilities estimated on several
forms of the test (Ackerman, 1994; Camilli, Wang, & Fesq, 1995; De Champlain, 1996; Roussos & Stout, 1994).
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The first dimension, categorized as deductive reasoning, loads on AR items while the second factor, which
loads on Logical Reasoning (LR) and RC items, has been labelled as reading/informal reasoning.
Approximately 25% of the items on any given form of the LSAT measure this deductive reasoning skill
whereas the remaining 75% of the items require reading/informal reasoning. As was the case with
unidimensional datasets, an item parameter structure that resembles that found on a typical form of the
LSAT was selected in order to generate more "authentic" item responses. More precisely, the first dimension
(factor) was constrained to load on 25% of the items while the probability of a correct response on the
remaining 75% of the items was solely a function of the second latent trait. As well, (unidimensional) item
discrimination parameters were randomly selected from actually administered LSAT AR + LR/RC items
and used to simulate the first and second dimensions in this study. The unidimensional item difficulty
parameter estimates for these items were treated as MDIF values in the simulations. The item parameters
utilized in the two-dimensional simulations are shown in Table 3.

TABLE 3

True two-dimensional item parameters
Item al a2 MDIF c
1 0.622132 0.000000 -1.710310 0.119606
2 0.806592 0.000000 0.161454 0.162809
3 0.842712 0.000000 0.081694 0.140943
4 0.882054 0.000000 0.854201 0.184434
5 0.904691 0.000000 1.371124 0.242642
6 0.000000 0.644494 -0.892373 0.119606
7 0.000000 0.878353 1.081976 0.058036
8 0.000000 0.957605 0.916684 0.196364
9 0.000000 0.946642 1.520134 0.224578
10 0.000000 0.803943 -1.139963 0.119606
11 0.000000 0.751002 -0.696663 0.119606
12 0.000000 0.551905 -0.315874 0.119606
13 0.000000 0.688839 0.632910 0.145847
14 0.000000 0.808383 0.554415 0.208314
15 0.000000 0.567085 -0.087459 0.119606
16 0.000000 0.783265 0.256477 0.206116
17 0.000000 0.694929 -1.357711 0.119606
18 0.000000 0.543069 -0.608002 0.119606
19 0.000000 0.792140 1.138772 0.155819
20 0.000000 0.773915 0.280484 0.246003

In addition, the two-dimensional datasets were generated to vary as a function of the same two test lengths
(20 and 40 items) and three sample sizes (250, 500, and 1,000 test takers) previously outlined in the
unidimensional conditions. The 40-item datasets were also composed of two 20-item tests. Also, past
research has shown that the correlation between reading/informal reasoning and deductive reasoning
proficiencies on a large number of LSAT forms is at or near 0.70 (Camilli, Wang, & Fesq, 1995;
De Champlain, 1996). Hence, the correlation between both latent traits was set at either 0.00 or 0.70 in
the two-dimensional simulations. Finally, each cell of this 2 (test length) x 3 (sample size) x 2 (latent trait
correlation) design was replicated 100 times for a total of 1,200 two-dimensional datasets.

Also, the fit of a one- versus a two-factor full-information factor analytic model was assessed using the
likelihood-ratio chi-square difference test provided in TESTFACT. In addition, the fit of a unidimensional
model was ascertained with the approximate x2 statistic, computed after fitting a one-factor model to each
two-dimensional item response matrix with the computer program NOHARM (Fraser & McDonald, 1988).
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Analyses

In order to investigate the effects of the independent variables on the empirical Type I error rates and
rejection rates, separate logit-linear analyses were performed for the approximate x2 and the likelihood-ratio
chi-square difference test for each of the unidimensional and multidimensional conditions. Specifically,
logit-linear analyses were performed with the objective of fitting the most parsimonious model to the
response frequencies. With respect to unidimensional datasets, the independent variables were test length
and sample size while the dependent variable was the number of acceptances and rejections of the null
hypothesis. This variable was labelled "rejection decision." The logit-linear analyses were done in a forward
hierarchical manner; that is, starting with the simplest main effect and then fitting incrementally more
complex models while adhering to the principle that lower-order effects are also included in the model.
The likelihood-ratio x2 was employed as the fit statistic. A model was deemed to be acceptable if the
corresponding p-value was equal to or greater than 0.15. Any individual effect was considered to be
significant if the size of the absolute z-value was greater than 2.0. With regards to simulated
two-dimensional datasets, the independent variables were test length, sample size, and latent trait
correlation whereas the dependent variable was rejection decision. Results are presented for the simulated
unidimensional and multidimensional datasets separately. It should be noted that, for the sake of
simplicity, associations will be presented with respect to the impact of the independent variable(s) only.
For example, if the test length by rejection decision association was significant, it would be referred to as
the effect of test length.

Results

Unidimensional Dataset Analyses

The number of false rejections of the assumption of unidimensionality based on the 100 datasets for each of
the simulated conditions are shown in Table 4.

TABLE 4

Rejections of unidimensionality per 100 trials for unidimensional datasets (nominal oo = .05)

Fit Statistic

Approximate x2 (NOHARM) G2 Difference Test (TESTFACT)
Test Length 20 items 40 items 20 items 40 items
Sample size

250 0 1 58 79
500 0 0 41 77

1,000 5 7 17 77

Approximate x2 Statistic Empirical Type I Error Rates (NOHARM)

The empirical Type I error rates tended to be below or near the nominal .0 level (.05). In fact, the maximum
number of rejections of the assumption of unidimensionality in any given condition was 7/100 for datasets
simulated to contain 40 items and 1,000 test takers. Logit-linear analyses results show that a model including
sample size as the sole independent variable was sufficient in adequately accounting for the frequency of
rejections (and acceptances) of the assumption of unidimensionality,

L2 (4) = 1.75, p = .782.
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The effect of sample size was quite clear. There was only one false rejection (.005) of the assumption of
unidimensionality for datasets simulated to include 250 test takers and none for item response matrices
generated to contain 500 test takers. However, the assumption of unidimensionality was incorrectly rejected
for 12 (.06) datasets simulated to contain 1,000 test takers.

Approximate G2 Difference Test Empirical Type I Error Rates (TESTFACT)

The number of incorrect rejections of the assumption of unidimensionality was quite large in all simulated
conditions when based on the likelihood-ratio chi-square difference test provided in TESTFACT. Empirical
Type I error rates ranged from 0.17 (for datasets that included 20 items and 1,000 test takers) to .79 (for
datasets that contained 40 items and 250 test takers). These results are clearly indicative of a severe inflated
Type I error rate problem when using the G2 difference test to determine whether an item response matrix is
unidimensional or not, at least with datasets similar to those simulated in the present study. The results
obtained from the logit-linear analyses indicate that a fully saturated model, including the main effects of
test length and sample size as well as the interaction of both variables, is required to adequately explain the
frequencies of rejection and acceptance rates, L2 (0) = 0.00, p = 1.00. All of these effects had absolute z-values
greater than or equal to 2.0.

As is traditionally the case, the effects of the independent variables found in the higher-order interaction
will first be explained. Results show that the number of false acceptances of the assumption of
unidimensionality decreased sharply for 20-item datasets from 58/100 rejections for item response matrices
simulated to contain 250 test takers to 41/100 rejections for 500 test taker datasets and finally, 17/100
rejections for datasets simulated to include 1,000 test takers. However, this drop in empirical Type I error
rates was absent for the 40-item datasets. For the latter datasets, empirical Type I error rates remained quite
constant across the three sample sizes. The empirical Type I error rates were equal to .79, .77, and .77 for
40-item datasets simulated to contain 250, 500, and 1,000 test takers respectively.

Multidimensional Dataset Analyses

The number of rejections of the assumption of unidimensionality based on the 100 datasets for each of the
simulated two-dimensional conditions are shown in Table 5.

TABLE 5

Rejections of unidimensionality per 100 trials for two-dimensional datasets (nominal oo = .05)

Fit Statistic

Latent Trait
Correlation Test Length

Approximate x2 (NOHARM) G2 Difference Test (TESTFACT)

20 items 40 items 20 items 40 items
Sample Size

r 01 0, = 0.00 250 100 100 100 100
500 100 100 100 100

1,000 100 100 100 100

r 01 0, = 0.70 250 99 100 77 96
500 100 100 79 97

1,000 100 100 94 99



Approximate x2 Statistic Rejection Rates (NOHARM)

Results clearly show that the approximate x2 statistic was able to consistently identify the (true)
multidimensional nature of the simulated datasets. The assumption of unidimensionality was rejected for
1,199/1,200 (99.9%) simulated datasets. Not surprisingly, the logit-linear analyses results indicate that a
model including only the dependent variable rejection decision was sufficient to explain the observed
frequencies, L2 (11) = 4.97, p = 0.932. Neither test length, sample size, nor latent trait correlation had a
significant effect on the probability of rejecting the assumption of unidimensionality when based upon the
approximate x2 statistic.

Approximate G2 Difference Test Rejection Rates (TESTFACT)

There was a considerably greater degree of variability in rejection rates based on the full-information factor
analyses. Rejection rates ranged from 77/100 (20-item datasets simulated to contain 250 test takers and to
reflect zero correlation between latent traits) to 100/100 (all conditions that specified zero correlation
between the two latent traits). Logit-linear analyses results yielded a model that included the main effects of
test length and sample size as well as the latent trait correlation, L2 (11) = 0.087, p = 1.00.

With respect to the main effect of test length, results indicate that the number of failures to reject
unidimensionality decreased significantly from the 20-item datasets (50/600 or 0.083 false acceptances of
unidimensionality) to the 40-item datasets (8/600 or .013 false acceptances of unidimensionality). Regarding
the main effect of sample size, results show that the number of false acceptances of the assumption of
unidimensionality remained fairly stable for the 250 and 500 test taker datasets (respectively, 27/400 or 0.067
false acceptances and 24/400 or 0.06 false acceptances of unidimensionality) but dropped noticeably for
datasets that contained 1,000 test takers (7/400 or 0.017 false acceptances of unidimensionality). Finally, with
respect to the latent trait correlation main effect, findings indicate that the number of false acceptances of the
assumption of unidimensionality increased drastically from 0/600 for datasets simulated to have zero
correlation between both proficiencies to 58/600 (0.097) for item response matrices generated to reflect a
correlation of 0.7 between both latent traits.

Discussion

The use of indices and statistics based on NLFA has become increasingly popular as a means of assessing the
dimensionality of an item response matrix. Indices and statistics based on both limited- and full-information
factor analytic models are currently available to the practitioner interested in determining the number of
dimensions underlying a set of item responses. Although these indices have been shown to be useful and
accurate in many testing conditions, few studies have investigated the behavior of these procedures with
small sample sizes and short tests; that is, conditions that are typically encountered within CAT and CMT
frameworks. Therefore, the purpose of this investigation was to compare the empirical Type I error rates and
rejection rates obtained using two NLFA fit statistics with conditions simulated to contain short tests and
small sample sizes. More precisely, the behavior of an approximate x2 statistic (Gessaroli & De Champlain,
1996) based on McDonald's (1967) limited-information NLFA model as well as a likelihood-ratio G2
difference test based on Bock, Gibbons, and Muraki's (1988) full-information item factor analytic model,
were examined.

With respect to empirical Type I error rates, results show that the G2 difference test suffers from a severe
inflated Type I error rate problem, irrespective of the condition simulated. In addition, the interaction of both
independent variables manipulated (i.e., sample size and test length) appears to be related to the probability
of correctly accepting or incorrectly rejecting the assumption of unidimensionality. The approximate x2

statistic, on the other hand, had empirical Type I error rates that were below or near the nominal oo level
(.05) in all conditions. However, it is important to point out that the probability of accepting or rejecting the
assumption of unidimensionality, when based upon the latter statistic, was dependent upon sample size. This
result is not surprising given that the probability of rejecting a model of restricted dimensionality is often
dependent upon sample size with chi-square distributed statistics (Marsh, Balla, & McDonald, 1988).
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Regarding rejection rates with (true) two-dimensional datasets, findings again show that all independent
variables manipulated; that is, test length, sample size, and latent trait correlation, had a significant effect on
the probability of rejecting the assumption of unidimensionality based on the G2 difference test. Although
rejection rates were generally acceptable (varying from 77/100 to 100/100 datasets), it is important to point
out that this high level of power is more than likely attributable to the inflated Type I error rates previously
reported with the simulated unidimensional datasets. On the other hand, the approximate x2 statistic, based
on a NOHARM analysis, was able to correctly reject the assumption of unidimensionality for all but one of
the two-dimensional simulated datasets. In addition, none of the independent variables had an effect on the
probability of correctly rejecting (or incorrectly accepting) the assumption of unidimensionality.

Mood, Graybill, and Boes (1974) state that a statistical test which displays a small Type I error rate (ideally 0)
as well as a high probability of rejecting a false null hypothesis (ideally unity) is worthy of merit. The results
obtained in this study would seem to suggest that the approximate x2 statistic possesses these desirable
qualities, at least for the conditions simulated. Also, Roznowski, Tucker, and Humphreys (1991) suggest that
practitioners should strive to select dimensionality assessment indices that are "robust to changes in levels
of parameters and lack substantial interaction among parameters" (p.124). Although the empirical Type I
error rates obtained with the approximate x2 statistic were affected by sample size, none of the manipulated
variables significantly impacted upon its rejection rates with two-dimensional datasets. On the other hand,
both empirical Type I error rates and rejection rates based on the G2 difference test were highly dependent
upon test length, sample size, and latent trait correlation (with two-dimensional datasets).

In summary, the preliminary findings reported with respect to the approximate x2 statistic were
encouraging for the following reasons:

the procedure appears to have low Type I error rates (below or near the nominal level);
rejection rates were very high with two-dimensional datasets; and
the statistic was relatively unaffected by the sample sizes, test lengths, and latent trait correlation levels
simulated.

However, it is important to emphasize that these findings are preliminary and that caution should be
exercised when interpreting, and especially, generalizing results to other conditions. Therefore, it is
important to underscore the limitations associated with this investigation as well as offer suggestions for
future research in this area.

First and foremost, the conditions that were simulated in the present study reflect some of the dataset
features that might be encountered within a CAT and CMT framework. Obviously, there are a multitude of
factors, in addition to small item sets and small samples, that contribute to making CAT and CMT forms so
uniquely distinct from their paper-and-pencil counterparts. For example, context effects, attributable to the
large number of "tailored" forms administered at any given time, are prevalent in CAT and CMT forms. The
inclusion of this factor in future studies examining the behavior of dimensionality assessment procedures
should be of the utmost importance.

Second, it is important to point out that NOHARM does not estimate latent trait values but rather assumes
that they are distributed - N(0,1). TESTFACT, on the other hand, does estimate proficiency scores for all test
takers. Given that the latent trait values in this study were simulated according to a standard normal
distribution (i.e., that conform exactly to the NOHARM assumption), this could have advantaged the
approximate x2 and partially account for its superior performance over the G2 difference test provided in
TESTFACT. Nonetheless, preliminary findings showed that the empirical Type I error rates computed for the
approximate x2 were not severely affected with certain nonnormal latent trait distributions (De Champlain
& Tang, 1993). However, more research needs to be undertaken to assess the performance of the
approximate x2 statistic in a larger number of conditions, including under various proficiency distributions,
before making any definite conclusions as to its usefulness in assessing dimensionality with datasets
containing few items and small samples.
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Third, it is important to point out that the fit of a simple (unidimensional) model was examined for all
simulated datasets. The fit of more complex models (e.g., two-, three-dimensional models) should also be
part of any future investigations so as to determine whether the approximate x2 statistic and the G2
difference test are able to identify the (true) number of dimensions underlying item response matrices.

Finally, it is important to mention that only two procedures were examined in this study. Given the large
number of indices and statistics proposed for the assessment of dimensionality (c.f. Table 1), it would seem
imperative to undertake a comparative study that would allow the respective strengths and weaknesses of
each approach to be highlighted.

Hopefully, the results presented in this study will offer some information to practitioners interested in using
either the approximate x2 statistic or the G2 difference test for assessing the dimensionality of datasets that
contain few items and small samples. Also, it is hoped that these findings will foster future research in this
area and eventually lead to helpful guidelines with respect to the assessment of dimensionality of LSAT
forms administered within a CAT framework.

References

Ackerman, T. (1994, April). Graphical representation of multidimensional IRT analysis. Paper presented at the
annual meeting of the American Educational Research Association, New Orleans, LA.

Bartholomew, D. J. (1983). Latent variable models for ordered categorical data. Journal of Econometrics, 22,
229-243.

Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77-85.

Bejar, I. I. (1980). A procedure for investigating the unidimensionality of achievement tests based on item
parameter estimates. Journal of Educational Measurement, 17, 283-296.

Bejar, I. I. (1988). An approach to assessing unidimensionality revisited. Applied Psychological Measurement,
12, 377-379.

Ben-Simon, A. & Cohen, Y. (1990, April). Rosenbaum's test of unidimensionality: Sensitivity analysis. Paper
presented at the annual meeting of the American Educational Research Association, Boston.

Berger, M. P. F, & Knol, D. L. (1990, April). On the assessment of dimensionality in multidimensional item response
theory models. Paper presented at the annual meeting of the American Educational Research Association,
Boston.

Bock, D. R., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An
application of the EM algorithm. Psychometrika, 4, 443-459.

Bock, D. R., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological
Measurement, 12, 261-280.

Browne, M. W. (1977). The analysis of patterned correlation matrices by generalized least-squares. British
Journal of Mathematical and Statistical Psychology, 30, 113-124.

Browne, M. W. (1986). Robustness of statistical inference in factor analysis and related models (Research Report
86-1). Pretoria, South Africa: University of South Africa, Department of Statistics.

Budescu, D. V., Cohen, Y., & Ben-Simon, A. (1994, April). A revised modified parallel analysis (RMPA) for the
construction of unidimensional item pools. Paper presented at the annual meeting of the National Council on
Measurement in Education, New Orleans, LA.

Camilli, G., Wang, M. M., & Fesq, J. (1995). The effects of dimensionality on equating the Law School
Admission Test. Journal of Educational Measurement, 32, 79-96.

17 BEST COPY AVAIHA ItAf



Collins, L. M., Cliff, N., McCormick, D. J., & Zatkin, J. L. (1986). Factor recovery in binary datasets: A
simulation. Multivariate Behavioral Research, 21, 377-391.

De Ayala, R. J., & Hertzog, M. A. (1989, March). A comparison of methods for assessing dimensionality for use in
Item Response Theory. Paper presented at the annual meeting of the National Council on Measurement in
Education, San Francisco.

De Champlain, A. (1992). Assessing test dimensionality using two approximate chi-square statistics. Unpublished
doctoral dissertation, University of Ottawa, Ottawa, Ontario, Canada.

De Champlain, A. (1996). The effect of multidimensionality on IRT true-score equating for subgroups of
examinees. Journal of Educational Measurement, 33, 181-201.

De Champlain, A., & Gessaroli, M. E. (1991, April). Assessing test dimensionality using an index based on
nonlinear factor analysis. Paper presented at the annual meeting of the American Educational Research
Association, Chicago.

De Champlain, A., & Tang, K.L. (1993, April). The effect of nonnormal ability distributions on the assessment of
dimensionality. Paper presented at the annual meeting of the National Council on Measurement in
Education, Atlanta, GA.

De Champlain, A., & Tang, K. L. (1997). CHIDIM: A FORTRAN program for assessing the dimensionality of
binary item responses based on McDonald's nonlinear factor analytic model. Educational and Psychological
Measurement, 57, 174-178.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.

Dorans, N. J., & Lawrence, I. M. (1988, April). An item parcel approach to assessing the dimensionality of test data.
Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Drasgow, E, & Lissak, R. I. (1983). Modified parallel analysis: A procedure for examining the latent
dimensionality of dichotomously scored item responses. Journal of Applied Psychology, 68, 363-373.

Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral
Research, 23, 267-269.

Gessaroli, M. E. & De Champlain, Al (1996). Using an approximate chi-square statistic to test for the number
of dimensions underlying the responses to a set of items. Journal of Educational Measurement, 33, 157-179.

Goldstein, H., & Wood, R. (1989). Five decades of item response modelling. British Journal of Mathematical and
Statistical Psychology, 42, 139-167.

Haberman, S. J. (1977). Log-linear models and frequency tables with small expected cell counts. Annals of
Statistics, 5, 1148-1169.

Hambleton, R. K., & Rovinelli, R. J. (1986). Assessing the dimensionality ofa set of test items. Applied
Psychological Measurement, 10, 287-302.

Hambleton, R. K., Zaal, J. N., & Pieters, J. P. M. (1993). Computerized adaptive testing: Theory, applications
and standards. In R. K. Hambleton and J. N. Zaal (Eds.), Advances in educational and psychological testing:
Theory and applications (pp. 341-366). Boston: Kluwner Academic Publishers.

Hattie, J. (1984). An empirical study of various indices for determining unidimensionality. Multivariate
Behavioral Research, 19, 49-78.

Hattie, J. (1985). Methodology review: Assessing unidimensionality of tests and items. AppliedPsychological
Measurement, 9, 139-164.

Holland, P. W. (1981). When are item response models consistent with observed data? Psychometrika, 46, 79-92.



Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone
latent variable models. The Annals of Statistics, 14, 1523-1543.

Huhn, C. L., Drasgow, F., & Parsons, C. K. (1983). Item response theory: Application to psychological
measurement. Homewood, IL: Dow-Jones Irwin Publishing Company.

Jones, P. B. (1988, April). Assessment of dimensionality in dichotomously-scored data using multidimensional
scaling: Analysis of HSMB data. Paper presented at the annual meeting of the American Educational
Research Association, New Orleans, LA.

Jones, P. B., Sabers, D. L., & Trosset, M. (1987). Dimensionality assessment for dichotomously scored items using
multidimensional scaling (Report No. TM 870 416). Tucson, AZ: University of Arizona. (ERIC Document
Reproduction Service No. ED 283 877).

Junker, B. W, & Stout, W. F. (1994). Robustness of ability estimation when multiple traits are present with one
trait dominant. In D. Laveault, B .D. Zumbo, M. E. Gessaroli, & M. W. Boss (Eds.), Modern theories in
measurement: Problems and issues (pp 31-36). Ottawa, ON: University of Ottawa, Edumetrics Research Group.

Kingsbury, G. G. (1985). A comparison of item response theory procedures for assessing response dimensionality
(Report No. TM 850 477). Portland, OR: Portland Public Schools. (ERIC Document Reproduction Service
No. ED 261 075).

Kingston, N. (1986). Assessing the dimensionality of the GMAT verbal and quantitative measures using
full-information factor analysis (Report No. TM 860 575). Princeton, NJ: Educational Testing Service. (ERIC
Document Reproduction Service No. ED 275 698).

Kingston, N. M., & McKinley, R. L. (1988, April). Assessing the structure of the GRE general test using
confirmatory multidimensional Item Theory. Paper presented at the annual meeting of the American
Educational Research Association, New Orleans, LA.

Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analysis and multidimensional
item response models. Multivariate Behavioral Research, 26, 457-477.

Koch, W. R. (1983). The analysis of dichotomous test data using nonmetric multidimensional scaling (Report No.
TM 830 617). Austin, TX: The University of Texas at Austin. (ERIC Document Reproduction Service No.
ED 235 204).

Liou, M. (1988). Unidimensionality versus statistical accuracy: A note on Bejar's method for detecting
dimensionality of achievement tests. Applied Psychological Measurement, 12, 381-386.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

McDonald, R. P. (1967). Nonlinear factor analysis. Psychometrika Monograph No. 15, 32 (4, Pt. 2).

Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit in confirmatory factor analysis: The
effect of sample size. Psychological Bulletin, 103, 391-410.

Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational
Statistics, 11, 3-31.

Mood, A. M., Graybill, E A., & Boes, D. C. (1974). Introduction to the theory of statistics. New York: McGraw-Hill.

Morgan, R. (1989, March). An examination of the dimensional structure of the ATP biology achievement test. Paper
presented at the annual meeting of the National Council on Measurement in Education, San Francisco.

Muraki, E., & Engelhard, G. (1985). Full-information item factor analysis: Applications of EAP scores.
Applied Psychological Measurement, 9, 417-430.

Nandakumar, R. (1987). Refinement of Stout's procedure for assessing latent trait dimensionality. Unpublished
doctoral dissertation, University of Illinois, Urbana-Champaign.

19 BEST copy AVARABEE



16

Nandakumar, R. (1991). Traditional dimensionality versus essential dimensionality. Journal of Educational
Measurement, 28, 99-117.

Nandakumar, R. (1994). Assessing the dimensionality of a set of item responses-Comparison of different
approaches. Journal of Educational Measurement, 31, 17-35.

Nandakumar, R., & Stout, W. F. (1993). Refinement of Stout's procedure for assessing latent trait
dimensionality. Journal of Educational Statistics, 18, 41-68.

Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications.
Journal of Educational Statistics, 4, 207-230.

Reckase, M. D. (1981). Guessing and dimensionality: The search for a unidimensional latent space (Report No. TM
810 389). Columbia, MO: University of Missouri. (ERIC Document Reproduction Service No. ED 204 394).

Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological
Measurement, 9, 401-412.

Rosenbaum, P. (1984). Testing the local independence assumption in item response theory (Technical Report No.
84-85). Princeton, NJ: Educational Testing Service.

Roussos, L., & Stout, W. F. (1994, April). Analysis and assessment of test structure from the multidimensional
perspective. Paper presented at the annual meeting of the American Educational Research Association,
New Orleans, LA.

Roznowski, M., Tucker, L. R., & Humphreys, L. G. (1991). Three approaches to determining the
dimensionality of binary items. Applied Psychological Measurement, 15, 109-127.

Steiger, J. H. (1980a). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245-251.

Steiger, J. H. (1980b). Testing pattern hypotheses on correlation matrices: Alternative statistics and some
empirical results. Multivariate Behavioral Research, 15, 335-352.

Stout, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52,
589-617.

Stout, W. F. (1990). A new item response theory modelling approach with applications to unidimensionality
assessment and ability estimation. Psychometrika, 55, 293-325.

Stout, W. E, Junker, B., Nandakumar, R., Chang, H. H., & Steidinger, D. (1991). DIMTEST and TESTSIM
[Computer programs]. Urbana, IL: University of Illinois, Department of Statistics.

Takane, Y., & De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of
discretized variables. Psychometrika, 52, 393-408.

Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., & Thissen, D. (1990).
Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence Erlbaum Associates.

Wilson, D., Wood, R., & Gibbons, R. D. (1991). TESTFACT Test scoring, item statistics, and item factor analysis.
Mooresville, IN: Scientific, Software, Inc.

Zwick, R. (1987). Assessing the dimensionality of NAEP reading data. Journal of Educational Measurement, 24,
293-308.

Zwick, R. W., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to
retain. Psychological Bulletin, 99, 432-442.



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

Educe 1ln.! Resources loloiroolion Carer

This document is covered by a signed "Reproduction Release (Blanket)"
form (on file within the ERIC system), encompassing all or classes of
documents from its source organization and, therefore, does not require a
"Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

EFF-089 (1/2003)


